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To elucidate the mechanism of the region-specific expression of the aromatase in the primate brain,
we investigated the distribution and level of the total aromatase mRNA and the aromatase mRNA
with the exon 1-f, which was reported to be the brain-specific exon 1 of the human aromatase gene,
in male Japanese monkeys. Total RNAs extracted from the hypothalamus-preoptic area (HPOA),
amygdala (AMY), cerebellum, hippocampus, brainstem, five regions of cerebral cortex and four
peripheral tissues: liver, kidney, adipose tissue and testis were subjected to a semi-quantitative
reverse transcription-polymerase chain reaction-Southern blotting (RT-PCR-SB) assay. The levels
of the total aromatase mRNA was high in the HPOA, AMY and testis with a low level of message
in the other regions. These results roughly paralleled the distribution of aromatase activity of the
monkey brain previously reported. The level of the aromatase mRNA with the exon 1-f was high in
the HPOA and AMY, and low in the other regions of the brain and the testis with an undetectable
level of the messenger in the other peripheral tissues. Furthermore, the ratio of the aromatase
mRNA with the exon 1-f to the total aromatase mRNA was different among various regions of the
monkey brain, for example, the ratio in the AMY was distinctly higher than that in the HPOA. These
results indicated that the level of the aromatase mRNA mainly regulated the level of aromatase
protein and aromatase activity in a region-specific manner, and that the exon 1-f was used in most
of the monkey brain regions. Moreover, the ratio of the aromatase mRNA with the exon 1-f to the
total aromatase mRNA varied in the brain regions. It was implied that the aromatase mRNA using
the other first exons was also expressed in the brain and was involved in the region-specific
expression of the brain aromatase.
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INTRODUCTION system was involved in the tissue-specific expression of
the gene [8-15]. In the system, different exons 1 were
alternatively used from the multiple exons 1 of the gene
in different peripheral tissues, respectively; for
example, a major transcript using exon 1-a and minor
transcripts using exons 1-b, 1-c and 1-d were detected
in the placenta. More recently, studies on the human
brain revealed that the major transcript in the hypo-
thalamus-preoptic area (HPOA) and amygdala (AMY)
used exon 1-f, which is the “brain specific exon 17
termed by Harada ez al. [9], and the minor transcript
in the brain contained exons 1-b and I-4 [8, 12].
Aromatase in the brain plays an important role in
mediating the sexual differentiation of neural struc-
tures perinatally and is involved in the regulation of

The formation of estrogens from androgens is cata-
lyzed by a specific form of cytochrome P450, aroma-
tase cytochrome P450 {P450,z0nm)- This enzyme is
expressed in extragonadal tissues such as the brain,
adipose tissue and liver, as well as in gonadal tissues of
ovary, testis and placenta in many species [1-5]. It has
been well known that the levels of the enzyme in these
tissues are regulated in a tissue-specific fashion [4, 6].
Previous studies demonstrated that human aromatase
gene, consisting of 10 exons and spanning at least
70 kb, was isolated from the placenta [7]. Furthermore,
it was clarified that the multiple untranslated first exons
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reproductive behaviour in mammalian species [16—19].
Previous studies reported that aromatase activity in
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monkey brain was highest in the hypothalamus and the
AMY, and was detected at lower levels in several
regions of the cerebral cortex and hippocampus
through the fetal, juvenile and adult stages [20-22]. To
study the mechanism of these region-specific ex-
pressions of aromatase in the monkey brain, we first
cloned and sequenced part of the monkey aromatase
c¢DNA using the gene amplification method. Secondly,
we investigated the distribution of the total aromatase
mRNA, and the specific expression of aromatase
mRNA with exon 1-f in the brain, by the use of a
semi-quantitative reverse transcription—polymerase
chain reaction—-Southern blotting (RT-PCR-SB) assay
[23]. Furthermore, we examined the ratio of aromatase
mRNA with exon 1-f to the total aromatase mRNA.

MATERIALS AND METHODS
Animals and rtissues

Three-vear-old male Japanese monkeys AMacaca
Sfuscata, were used. The hypothalamus-preoptic area
(HPOA), amygdala (AMY), hippocampus, frontal cor-
tex, motor cortex, sensory cortex, temporal cortex,
occipital cortex, cerebellum, brainstem, liver, kidney,
adipose tissue and testis were dissected and removed
from two monkeys under a deep anesthesia. The tissues
were frozen in liquid nitrogen and kept at — 80 C until
RNA extraction.

Chemicals and laboratory equipment

All reagents used in these studies were the highest
grade available. Water was either double distilled and
autoclaved, or treated with an additional 0.1¢, di-
ethylpyrocarbonate and reautoclaved. All equipment
was autoclaved or sterilized at 200" C for the elimin-
ation of RNase activity. Microtubes, pipette tips and
centrifugation tubes were used only once to avoid
contamination with amplified or cloned genes.

RNA extraction

The total RNA was extracted from each tissue
by the guanidium-cesium chloride ultracentrifugation
method [24] and the RNA concentration was
determined by UV absorption.

RT

The total RNA extracted from each tissue was re-
verse transcribed to synthesize single stranded cDNA.
Briefly, total RNA was incubated at 42°C for 60 min
with 2 units of RAV-2 reverse transcriptase (Takara,
Kyoto, Japan) in a 10 ul reaction volume containing
50mM Tris-HCI (pHS8.3), 100mM KCI, 10mM
MgCl,, 10mM DTT, t mM of each ANTP and 10 yuM
random hexadeoxynucleotide primer {Takara).

Oligonucleotide primers

The sequences of the PCR primers for the aromatase
mRNAs were derived from that of the human aroma-

tase gene because the monkey aromatase cDNA had
not been cloned yet. The sequences were as follows;
hAM2s: 5'-CTGAGGTCAAGGAACACAAC-3" and
hAM3as: 5-ACCCGGTTGTAGTAGTTGCA-3’
corresponded to nucleotide residues 105-124 and
364-343 of human aromatase cDNA [7], respectively,
and hAMI1-fs: 5-GAAAAGCCACCTGGTTCTTA-
3" matched sequence at the 5'-end of the brain specific
exon 1-f of the human aromatase gene [9]. To an-
alyze the total aromatase mRNA, the primers
hAM2s/hAM3as were used. To analyze aromatase
mRNA with exon 1-f, the primers hAM1-fs/hAM3as
were used. The cDNA regions flanked by the primer
sets contained one and two splicing sites, respect-
ively. The sequences of the primers for the f-actin
mRNA are as follows: fAs: 5-CCGCGAGAA-
GATGACCCAG-3, and fAas: 5-TGCTCCGAA-
GTCCAGGGCGAC-3'. The primer set flanked the
human f-actin cDNA sequence from base 426 to base
1245, as numbered by Iijima et al. [25], which con-
tained one splicing site.

PCR

Single stranded cDNA was subjected to PCR [26].
Briefly, 1 ul of cDNA (1/10 of obtained cDNA) was
amplified in a 10 ul reaction volume containing 50 mM
KCl, 1.5mM MgCl,, 10mM Tris=sHCl (pH 8.3),
200 uM of each ANTP, 0.5 uM of each primer and 0.25
units of Tag DNA polymerase (Perkin Elmer Cetus,
Norwalk, CT, U.S§.A.). The reaction was performed
for 24 cycles (to analyze the total aromatase mRNA), 28
cycles (to analyze the aromatase mRNA with exon 1-f)
or 14 cycles (to analyze the f-actin mRNA) at 94°C for
1 min, 55°C for 1 min and 72°C for 1 min with exten-
sion of the final 72°C incubation for an additional
9 min.

Nucleotide sequencing

In order to confirm the authenticity of the reaction,
the RT-PCR product was subjected to direct
nucleotide sequencing using 7aqg DNA polymerase
according to the dideoxy method [27]. To determine
the nucleotide sequence near the primers, the products
were subcloned into pBS M13* vector (Stratagene,
LaJolla, CA. U.S.A.) and sequenced using a seque-
nase DNA sequencing kit (USB, Cleveland, OH,
U.S.A)

Southern blotting (Sf)

One microliter of the RT-PCR product (1/10 of the
obtained product) from each tissue was size-fraction-
ated by electrophoresis in a 2.0%, agarose gel. After
electrophoresis, the product was transferred onto a
nylon membrane (Hybond N*, Amersham, Bucks.,
England). The membrane was prehybridized in the
buffer containing 6 x SSC (1 x SCC: 0.15 M sodium
chloride-0.015 M sodium citrate), 150 ug/ml de-
natured salmon sperm DNA, 19 SDS (sodium
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Fig. 1. Nucleotide sequence and deduced amino acid sequence of the RT-PCR products. (a) The nucleotide
sequences and deduced amino acid sequence of the RT-PCR products with the primers hAM1-fs/hAM3as. The
total RNA from the monkey AMY was subjected to RT-PCR with the primers, followed by nucleotide
sequencing. The nucleotide sequence was 97.6%, identical to the corresponding region of human cDNA, and
the deduced amino acid sequence of the reading frame showed 95.99, of homology with the human homologue.
The dark boxes indicate the change of amino acids; codons 9, 16 and 18 encoded Met, Met and Ile in the monkey
gene instead of Ile, Ile and Val in the human onc. respectively. The sequence of the product using primers
AM2s/AM3as was identical to a part of that using primers AM1-fs/AM3as. * indicates the same nucleotide as
the RT-PCR product. ¥ indicatcs the splicing site between exon 1-f and exon 2. The locations of the primers
are indicated by open boxcs. (b) The nucleotide sequences and deduced amino acid sequence of the products
with the primers fAs/f Aas. The product showed 97.7%, nucleotide scquence identity and 1009, homology at
the amino acid level with the human homologue.
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dodecyl sulfate) at 42°C for 3 h, and followed by
hybridization with *’P-labeled monkey aromatase
c¢DNA probe or monkey fi-actin cDNA probe in the
same buffer at 65°C for 12 h. The probes were syn-
thesized by the random priming method using the
respective RT-PCR product as a template. The mem-
brane was rinsed twice in 2 x SSC, 19, SDS at room
temperature for 10 min, followed by being washed
twice in 0.1 x SSC, 19, SDS at 65°C for 20 min. The
hybridization signal was analyzed by a Bioimage Ana-
lyzer, BAS-2000 (Fuji Film, Tokyo, Japan).

Semi-quantitative comparison of the levels of the
aromatase mRNAs and f-actin mRN A

In order to compare the levels of the aromatase
mRNAs and the f-actin mRNA in a semi-quantitative
fashion, graded diluted total RNAs of the AMY (100,
50, 25, 12.5, 6.25, 3.12, 1.56 and 0.78 ng) were sub-
jected to RT-PCR-SB to generate a standard curve.
To analyze the level of the total aromatase mRNA,
20 ng of the total RNA from HPOA, AMY and testis,
and 200ng from the other tssues were used. To
analyze that of the aromatase mRNA with exon 1-f,
20 ng of the total RNA from HPOA and AMY, and
200 ng from the other tissues were used. To analyze
that of the ff-actin mRNA, 20 ng of the total RNA from
all the tissues were used. The levels of aromatase
mRNAs and the ff-actin mRNA from each tissue were
calibrated using the standard curve.

RT-PCR blank

When distilled water as an RT-PCR blank was
simultaneously subjected to RT-PCR-SB with the
same reagents, no specific signal could be obtained,
indicating that no contamination of any reagents
occurred in these experiments.

RESULTS AND DISCUSSION
Partial cloming of monkey aromatase (DNA)

Using the sequence of the previously cloned human
aromatase cDNA [7, 9], three primers were designed
for use in the RT-PCR. Since the primer of AM2s
designed between AMI1-f and AM3as, the product of
the reaction with primers AMI1-fs/AM3as included
that with primers AM2s: AM3as.

The 390 bp of the RT-PCR product was generated
from the monkey AMY using the primers AMI1-
fs/AM3as for the aromatase mRNA with the exon 1-f.
The nucleotide sequence and the deduced amino acid
sequence of the product are shown in Fig. 1(a). The
nucleotide sequence of the product was 97.6°, identical
to the corresponding region of the human aromatase
cDNA, and the deduced amino acid sequence of the
reading frame of the product showed 100°, of hom-
ology with the human homologue. These results indi-
cated that the RT-PCR product was a part of monkey
aromatase cDNA. Furthermore, the sequence of the

product using the primers AM2s/AM3as was identical
to a part of that using the primers AM1-fs/AM3as.

Using the same method, the sequence of the product
for B-actin mRNA was confirmed to correspond with
a part of the monkey f-actin cDNA. The nucleotide
sequence and the deduced amino acid sequence of
the product are shown in Fig. 1(b). The product
showed 97.7%, nucleotide sequence identity and 1009%,
homology at the amino acid level with the human
homologue.

A standard curve for comparison of the levels of the
mRNAs

A standard curve was prepared from the radioac-
tivities of the signals of the RT-PCR products gener-
ated from the graded diluted control RNAs (data not
shown). Duplicate assays, which resulted in a highly
reproducible response pattern, showed a linear corre-
lation between the logarithmic value of the radioac-
tivity of the product signals and that of the weight of
the template RNA within a range of between 50 and
1.56 ng of its starting weight. Using the linear phase of
a standard curve, the level of total aromatase mRNA,
aromatase mRNA with 1-f and f-actin mRNA could be
semi-quantified in different tissues.

The distribution of the total monkey aromatase mRNA

The product of 240bp, which corresponded in
length to the distance between the 5’-ends of the two
primers on the human aromatase cDNA, was generated
by the RT-PCR with the primers AM2s/AM3as from
all regions of the brain and the peripheral tissues. The
level of the total aromatase mRNA of each tissue was
semi-quantified by the standard curve. The levels of
the message were as follows: HPOA, AMY, testis>» the
other tissues (Fig. 2), which roughly paralleled the
distribution of aromatase activity reported previously
[20-22]. This result indicated that aromatase mRNA
was widely distributed in the monkey brain and periph-
eral tissues. Furthermore, the results suggested that the
level of aromatase mRNA mainly regulated aromatase
activity in a region-specific manner through the regu-
lation of svnthesis of aromatase protein in monkey
brain.

The level of monkey f-actin mRNA of each tissue
was also semi-quantified in order to confirm the ade-
quacy of the RNA concentration which was deter-
mined from UV absorbance. As a result, the level of
p-actin mRNA recorded in each tissue varied less
than the total aromatase mRNA level and the mRNA
with exon 1-f (Fig. 2), indicating that the RNA con-
centration could be almost accurately determined from
UV absorbance.

The distribution of monkey aromatase mRNA with exon
1-f mRNA

Using the primers AMI1-fs;/AM3as, the RT-PCR
products of 390 bp were generated from all regions
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of the brain and testis. No signals of the product could
be detected in the kidney, liver and adipose tissue.
The levels of mRNA of each region in the brain and
testis were calibrated with the standard curve except
for some regions with a very low level of the message.
The levels of aromatase with exon 1-f were as follows:
AMY > HPOA»the other regions of the brain and
testis > the other peripheral tissues=0 (Fig. 2). These
results indicated that exon 1-f was used in most of the
monkey brain regions, and that the major transcripts in
the peripheral tissues used alternative first exons other
than exon 1-f, the same as the expression of the
aromatase gene in the human. Moreover, it should be
noted that the minor transcript using exon 1-f was
observed in monkey testis.

The ratio of aromatase mRNA with exon 1-f to the total
aromatase mRNA in monkey brain

The ratio of the aromatase mRNA with the exon 1-f
to the total aromatase mRNA was variable in the brain
regions. It was interesting that the ratio in the AMY
was distinctly higher than that in the HPOA because
the hormonal regulation of the aromatase activity was
reported to be different in two regions in the rodent
brain [28-31]. It was reported that some minor tran-
scripts using the other exon 1 were observed in human
brain [8, 12]. Furthermore, the aromatase cDNA clone
which was truncated 20bp down-stream from the
3’-acceptor splice junction in exon 2 was detected in
human fetus brain by Toda ez al. [15]. The difference
in the ratio may be due to the aromatase mRNAs using
the first exons except exon 1-f or the message without
the first exon. Our results together with these reports
suggest that the multiple first exons system is involved
in the region-specific expression and regulation of the
aromatase in primate brain as well as in those in the
peripheral tissues.
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